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SUMMARY 

A numerical method to handle the flow of a two-phase fluid over curved boundaries is proposed. The 
method is based on the double von Mises transformation which is derived in this work and is expected to be 
applicable to a variety of flow situations while utilizing the finite difference technique. In order to illustrate 
the numerical implementation of the method, dusty fluid flow through a porous channel possessing curved 
boundaries and the flow through a semi-infinite porous layer overlying a curved lower boundary are 
considered. The flow is assumed to be governed by model equations based on Brinkman’s equation and 
reflecting boundary conditions are employed in the study based on a uniform dust particle distribution. 
Results indicate that an increase in the permeability results in decreasing the tangential velocity component 
in regions close to the curved boundary, and increasing the dust parameters decreases this component. The 
effects of the grid size and the extent of the computational domain are discussed. The results also shed some 
light on the applicability of the dusty fluid flow model and suggest that the model is best employed when the 
permeability is high, a conclusion that is consistent with the validity of Brinkman’s equation. 
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1. INTRODUCTION 

The literature cites numerous numerical procedures and models that are applicable to the study 
of multiphase fluid flow systems. In particular, Crowe’ reports some of the numerical models that 
have been employed in the study of gas-particulate flow. Most of the reported methods rely 
heavily on the use of the popular finite differences method which, attractive as it may be, is 
impractical in handling cases where the boundaries are arbitrarily curved. 

In order to overcome some of the problems arising due to the presence of curved boundaries 
and yet employ the finite difference technique, this study offers an alternative approach that is 
based on the transformation of the governing equations using the von Mises transformation. The 
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numerical solution is obtained in the computational domain through the use of the finite 
difference technique. 

Although this work is concerned primarily with developing the transformation that is applic- 
able to two-phase fluid flow systems, a basic understanding of the von Mises transformation 
suitable for the study of single-phase fluid flow is essential and is also offered in this work in its 
more general, time-dependent form. This is followed by derivation of the double von Mises 
transformation that is proposed in this work to be applicable to the study of two-phase fluid flow 
over curved boundaries. 

The double von Mises extension is not only of great utility in the study of dusty fluid flow 
through porous media but also represents a major step in the study of general dusty gas flow in 
free space. One of its main objectives is to facilitate the study of the complicated problem of flow 
of a dusty fluid through domains with arbitrarily curved boundaries. It can also simplify matters 
in the study of dusty gas flow in rectangular domains. In this case the dust phase equations are 
only transformed in terms of the von Mises variables. It should be noted that when the dusty fluid 
flow is considered in rectangular domains, interchanging the independent variable Y with the 
streamfunction Y in the dust phase equations has been reported by S O O . ~  The current extended 
von Mises approach represents a more general method, of which the method followed by So0 is 
a special case. 

In order to illustrate the applicability of the extended von Mises approach, we consider the 
dusty fluid flow through two different porous domains: a semi-infinite porous block bounded 
below by a fluid of very high viscosity, termed here stationary or static fluid, and a porous channel 
possessing curved boundaries. This type of (static) boundary is chosen so that the Jacobian of the 
transformation associated with the fluid phase equations remains finite. 

The equations governing the flow in the described domain are based on a model that has been 
developed by Hamdan and B a r r ~ n , ~  which describes the flow of a dusty fluid in porous media 
based on Brinkman's model. One of the main physical applications of this model is that given the 
macroscopic distribution of the dust particle number density, it is possible to solve the model 
equations to obtain the conditions under which this distribution is possible. In the current work 
the model equations are employed to study the effect of introducing a uniform distribution of the 
dust particles (in the porous medium) on the fluid flow characteristics. Although in a typical 
gas-particulate flow problem in porous media the dust particles might undergo a variety of 
conditions leading to various capture, straining and settling mechanisms of the particles on the 
solid grains of the porous matrix-and hence the assumption of a uniform distribution of dust 
particles in the domain is indeed restrictive-the current problem nevertheless offers an initial 
step in the understanding of the more general problem of variable dust particle distribution. 
However, the proposed method of solution is extensible, as discussed in Section 9, to handle the 
variable distribution problem. 

2. THE von MISES TRANSFORMATION AND SINGLE-PHASE FLUID FLOW 

In 1927 von Mises4 introduced a co-ordinate transformation, now recognized as the von Mises 
transformation, to transform the two-dimensional boundary layer equations into a form in which 
the independent variables X and Y are replaced by X and '€' respectively, where Y is the 
streamfunction. 

Although the von Mises transformation has been known for over half a century, it has mainly 
been of considerable importance in theoretical boundary layer  investigation^.^ In a deviation 
from boundary layer analysis, Benjamin6 employed the transformation in his study of solitary 
waves with arbitrary vorticity distribution. 
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Numerical implementation of the von Mises transformation came about when Barron’ 
presented a formulation and computations involving von Mises variables in his study of flow over 
aerofoils of arbitrary shapes as a substitute for grid generation. His analysis showed that the von 
Mises transformation can be arrived at through Martin’s approach,* of which the von Mises 
transformation is a special case, obtained by a ‘judicious choice of the co-ordinate curves’. 

The success of the transformation in the numerical study of a particular flow problem relies 
heavily on the requirement that each of the boundaries of the flow domain remains a streamline 
or part of a streamline. The streamlines Y=constant, which may not be straight lines in the 
physical plane, are mapped into horizontal straight lines in the transformed plane and Y replaces 
the original independent variable. 

The problem of determining Y in the physical plane is replaced by the problem of determining 
Y in the rectangular computational plane. Other flow variables of interest (velocity, pressure and 
vorticity) become, in the computational plane, functions of X and Y. The method of solution for 
a particular problem is to transform the governing equations into the new co-ordinate system so 
that the curved boundaries of the physical domains are transformed into straight lines, with the 
whole of the domain being thus transformed into a rectangular region, designated the computa- 
tional domain. 

Two methods are possible to transform the governing equations into the new co-ordinates. The 
first relies on the direct transformation of the derivatives and the primitive variables involved by 
using the transformation operators which are discussed in this section. In this case the pressure 
terms are treated through the introduction of an energy function and the resulting equations are 
cast in vorticity-Y form. Details of this method are explained in the work of Barron.’ The second 
approach is to cast the governing equations in vorticity-streamfunction form and then to 
transform these equations in terms of the new co-ordinate transformation. This second approach 
is implemented here. 

Let Y represent the streamfunction of a two-dimensional flow and U and V represent the 
horizontal and vertical velocity components, given in terms of Y by 

U‘Yy, v=-Y,, (1) 

and let R represent the vorticity, given in terms of the velocity components by 

R =  v,- uy, (2) 

where, throughout this work, subscript notation denotes partial differentiation. 

co-ordinates ( X ,  Y )  and time T and the curvilinear co-ordinates (a, Y )  and time T, defined by 
We now consider the two-dimensional transformation of co-ordinates between the Cartesian 

@ = cD(X), (3) 

Y =Y(X, Y, T ) ,  

r=z(T) .  

Expanding (3)-(5) by the chain rule, the following expressions are obtained: 

a, = @,a, + yXay + T x a , ,  
ay = mYaQ + vyar + tyar, 
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Taking X=@ and T=z,  equations (6)-(8) take the form 

a, =a# + Y,dY , 

a Y  =Y'uJY, 

aT = a, +vTay. 
The spatial Jacobian of the above transformation is given by 

while the temporal Jacobian of the transformation is given by 

It should be noted at this point that if J1 =O or is infinite, or equivalently Yy=O or is infinite, 
then the transformation is singular. If J 2  = 0, or equivalently Y, = 0, then the transformation 
reduces to the steady transformation, i.e. the usual von Mises transformation. If, however, 
O<]J1l<ooand O<]J2J<co ,  then equations (3)-(5) with X = @  and T=T can be solved for Y,, 
Yy and YT in terms of the first derivatives of Y to give the expressions 

Substituting (14)-(16) into (9)-(1 l), the following first-derivative expressions in the new co- 
ordinate system are obtained, where the independent variable @ is replaced by its equivalent 
X and z is replaced by T :  

a, = ax -(y,/yY)aY > (17) 

The following expressions for the second-order spatial derivatives can also be obtained in the 
new co-ordinate system by applying the above operators on themselves: 

ax, = axx - 2( y,/ YY N X Y  + ( YX/ YY l2 aYY + (2 y, YXY / y4 - yxx/ YY - y: YYY / G)aY , (20) 

a Y Y  =(l/y~)aYY-(yY~/y~)aY (21) 

(22) 

The cross-derivative takes the form 

d X Y  = (YX/Y4)~YY + E(Y, YYY - YY YXY )/GI 8-9. 

Once the equations governing single-phase fluid flow are expressed in terms of the two- 
dimensional streamfunction and vorticity and the above differential operators are applied, then 
the roles of the dimensionless streamfunction and the independent variable Y have been inter- 
changed to yield new independent variables X, Y and Tin terms of which the flow variables are to 
be expressed. The governing equation that the streamfunction Y satisfies will be transformed into 
an equation that the new dependent variable Y satisfies, where Y= Y(X, Y, T). Furthermore, 
other flow variables that are originally functions of X, Y and T and satisfy the governing 
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equations in 0-Y form become functions of the new independent variables X ,  Y and T and thus 
satisfy the governing equations in the transformed 0 - Y  form. 

To this end the two-dimensional velocity components U and V defined by equations (1) are 
transformed using equations (9) and (10) to yield 

u= 1/Y,, (23)  

v= Y,/Y,= UY, .  (24) 

3. APPLICATION OF TRANSFORMATION EQUATIONS TO 

In order to illustrate the structure of the transformed equations, we apply the above-derived 
single-co-ordinate transformation to the Navier-Stokes equations. These equations are con- 
sidered here for the unsteady flow of an incompressible, viscous fluid in the following dimension- 
less vorticity-streamfunction form: 

NAVIER-STOKES EQUATIONS 

streamfunction equation, 

vorticity equation, 
s2 = - Y'x, - Y y y  ; 

RT + Yy 0, - 'Px fly =(axx + Qrr)/Re.  (26) 

Y;Y,,-2Y,Y,Y,y+(l+ Y;)Y,,=Y.$Q, (27) 

Applying the operators (17)-(21) to equations (25) and (26), we get 

[ %RXX - 2 Y X Y Y % P  + ( I  + Y:)f&~l/Re Y $  -0R,/Re + ( YTO, -0,)/ Y,. (28) 

4. THE EXTENDED von MISES TRANSFORMATION AND DUSTY GAS FLOW 

In Section 2 the von Mises transformation was extended to include the time derivative so as to 
facilitate studies of unsteady flow problems over curved boundaries. Successful application of the 
steady von Mises transformation to single-phase fluid flow problems over curved boundaries7* 
gives rise to the idea of extending the von Mises transformation even further in an attempt to offer 
a method that is capable of treating the general two-phase fluid flow over curved boundaries. 

Consider the two sets of transformations between the Cartesian co-ordinates ( X ,  , Y , )  and time 
& and the curvilinear co-ordinates (a,, Yl) and time tl , and between the Cartesian co-ordinates 
( X 2 ,  Y 2 )  and time and the curvilinear co-ordinates (a2, Y 2 )  and time t2, defined by 

and 

X 2 = % ,  

y2 = Y2(@2, y 2 ,  T 2 ) >  

TZ=z2,  

- 

with X ,  = X 2 ,  & = T2 and Y ,  = Y2 in the physical plane. 
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The Jacobians of the transformations are given by 

where the subscripts S and T indicate spatial and temporal respectively. 
It is clear that if Jls=O or is infinite, then the first transformation is singular, while if J~TGO, 

then the first transformation reduces to the steady von Mises transformation. Similar conclusions 
can be drawn about the second transformation. If, however, O <  1 JlsJ  <cc and O <  1 JIT1 <cq then 
(29)-(31) define a one-to-one transformation. Similarly, if O <  I JZsl <co and 0 <I  JZT( <cq then 
(32)-(34) define a one-to-one transformation. 

Using a similar analysis to that used in obtaining equations (17)-(19) reveals that partial 
derivatives in the two co-ordinate systems in the first transformation are related by 

while partial derivatives of the two co-ordinate systems in the second transformation are related 
by 

According to (29) and (32), we consider X1=Q1 and X2=Qz.  Together with the fact that 
X1 =X2 in the physical plane, we conclude that Q1 =Q2 in the computational plane. Likewise, 
according to (31) and (34), we take r, = T ~  and T2 =z2. Since 6 = T,, we must have r1 =z2. 

T )  and 
Y2 = Y2(X, Y 2 ,  T )  in the computational plane. The fact that Y1 = Y2 in the physical plane does 
not necessarily imply that Y1 = Y2 in the computational plane. This is due to the fact that the 
equations governing Y1 and Y2 in the computational plane are different. This is clarified further 
in the following discussion. 

The differential operators given by (39)-(41) will thus transform a given differential equation 
from the physical (Xl ,  Yl)  plane to the computational (al, Y l )  plane. The differential operators 
given by (42)-(44) will transform a given differential equation from the physical (X2, Y2) plane to 
the computational (a2, 'Y2) plane. 

So far no connection has been assumed between the governing equations in the physical plane 
or between the first and second transformations derived above. In order to make this connection, 

In the case of Y1 and Y2 the situation is different. From (30) and (33), Y1 = Y1 (X, Y 
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we assume that we are given, in the physical plane, coupled partial differential equations 
governing two-phase fluid flow. For the first phase we have a streamfunction equation given in 
terms of Y as a function of the two-dimensional co-ordinates X and Y (= Y , )  and time T. This 
streamfunction equation is coupled with the first-phase vorticity equation which is given in terms 
of R1 as a function of X and Y and time T. Similarly, for the second phase we assume that we have 
a streamfunction equation in terms of Y2 which is a function of X and Y (= Y2 = Yl) and time T. 
The streamfunction equation is coupled with the second-phase vorticity equation in terms of 
R2 as a function of X ,  Y and T. The two phases are coupled together through the vorticity of each 
of the phases. 

In the physical plane it is required to solve the coupled equations simultaneously to determine 
the flow variables Y , ( X ,  Y, T) ,  Y 2 ( X ,  Y, T ) ,  R 1 ( X ,  Y ,  T )  and R 2 ( X ,  Y, T ) .  By using the double 
transformation derived above, the flow equations are transformed from the physical plane into 
a computational plane where Y becomes an independent variable when the first-phase equations 
are transformed and Y becomes an independent variable when the second-phase equations are 
transformed. Since in the physical plane the two phases coexist-in other words we only have one 
physical plane-the one-to-one mapping from/to the physical plane to/from the computational 
plane necessitates the existence of a single computational domain. Therefore, if the transforma- 
tion of the governing equations is at all possible, then interchanging Yl and Y, and Y 2  and Y 
must be such that the grid lines Y =constant and Y = constant coincide in the computational 
plane. In this case it is possible to generate a one-to-one mapping from the physical plane to the 
computational plane. 

However, it is important to note that images of Yl=constant and Y2=constant do not 
necessarily coincide in the physical domain. These image lines represent the first-phase and 
second-phase streamlines respectively. Once the roles of the dependent variable Yl and the 
independent variable Y are interchanged, the first-phase governing equations are given in terms 
of R1 and Y, where Y= Y ( X ,  Yl) and R1 =R1(X, Yl) .  Similarly, for the second phase the 
equations are given in terms of R2 and Y, where Y= Y ( X ,  Y 2 )  and R2 =R2(X, Y2). Thus we have 
Y= Y(X, Yl), where Y is governed by the Y-equation due to the first phase. Similarly, 
Y= Y(X, Y2), where Y is governed by the Y-equation due to the second phase. We also know 
that the lines Y = constant and Y2 =constant coincide in the computational plane. This might 
lead to the apparent conclusion that the computed Y is the same. This, of course, is untrue, since 
Y is governed by two different partial differential equations and therefore the solution to each of 
the equations renders a value for Y that is different from the other. This can be compared to 
obtaining a coupled solution to two different flow variables that are functions of the same 
independent variables. If the partial differential equations are different, then the solution for each 
of the two flow variables is different. 

In terms of the physical plane terminology we can say that: in a given flow problem of 
a two-phase fluid the first-phase streamlines are different from the second-phase streamlines. The 
governing partial differential equations are to be solved io determine, say, the shape of the 
streamlines. In terms of the computational domain we have the following analogy. Given 
Y = Y =constant = CT, determine the second-phase value of Y on a given grid line and call the 
solution Y,. Then determine the first-phase value of Y on the same grid line and call it Yl. 
Plotting these two different values of Y gives the shape of the first-phase streamline Y = r~ and 
the shape of the second-phase streamline Y 2  = CT. 

At this point, in order to implement the transformation equations given by (39)-(44) and for 
convenience of notation, m1 and O2 are replaced by X ,  T, and z2 are replaced by T and Yl and 
Y2 are replaced by Y.  Equations (39)-(44) will thus take the following equivalent form: 
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for the second transformation, 

JT = J T  - C( y2 I T / (  y2 )Y 1 a,, 
ax = ax - C (  Y 2 ) X / W 2 ) Y  I & ,  
J Y  = [l/(Y2)YI 8.y. 

5. APPLICATION OF THE DOUBLE TRANSFORMATION TO SAFFMANS DUSTY 
GAS FLOW EQUATIONS 

In order to illustrate the structure of the transformed equations, the above double transformation 
is applied to the equations governing the flow of a dusty fluid as given by Saffman." Saffman's 
equations which, when the fluid phase is incompressible and the number density of the dust is 
constant, take the following dimensionless vorticity-streamfunction form: 

Here the dimensionless quantities Yl and Y2 are the fluid phase and dust phase streamfunctions 
respectively, R1 and R2 are the respective vorticities, n is the particle number density, S/M is the 
relaxation time, S is the Stokes coefficient of resistance, M is the mass of each dust particle and 
Re is the Reynolds number. 

Upon applying the first-transformation operators (46) and (47) to the fluid phase equations (51) 
and (52) while applying the second-transformation operators (49) and (50) to the dust phase 
equations (53) and (54), the following transformed equations are obtained: 
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6. APPLICATION TO DUSTY FLUID FLOW THROUGH POROUS MEDIA 

6.1. Problem formulation 

We consider the dusty fluid flow through a semi-infinite porous medium that is bounded below 
by a stationary (static) fluid as shown in Figure 1. The interface between the static fluid and the 
porous medium is assumed to be known, for the sake of simplicity, and takes the form Y = f ( X )  in 
the Cartesian plane, where f ( X )  is the smooth function given by 

It is further assumed that there is no momentum or mass transfer between the dusty fluid in the 
porous medium and the static fluid; thus the interface may be considered a streamline of the flow 
as discussed below. This physical situation of a porous medium overlying a stationary fluid can be 
realized if one considers a stationary fluid of a much higher viscosity than that of the fluid phase 
in the porous medium. The choice here is made so that the spatial Jacobian of the transformation, 
as applied to the fluid phase, does not become infinite. This situation is ascertained by the 
tangency condition that is used in conjunction with the chosen lower boundary. It should be 
noted that if the lower bounding fluid is not of high viscosity, then momentum and mass transfer 
between the dusty fluid in the porous medium and the bounding fluid has to be taken into 

I 
I flow 
I 

I 
Y I  

given I direction 

1- 

porous medium 

g i v e n  

I ’  

static f l u i d  
‘ x  
I 

Figure 1. Representative sketch: physical domain 
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consideration. In this case the interface between the two domains does not necessarily represent 
a streamline of the flow. Although it can be argued that the method of double von Mises 
transformation is still applicable in this case, the situation necessitates a knowledge of the 
boundary conditions along the interface. 

6.2. Governing equations 

porous media is governed by the following macroscopic differential equations: 
The steady, rotational, laminar plane flow of an incompressible, viscous dusty fluid through 

for the fluid phase, 

V u = 0 (conservation of mass), 

-Vp+pV2u+(v-u)(KN +p/q*)=O (conservation of linear momentum); (61) 

for the dust phase, 

V * v = 0 (conservation of mass), 

mN (v * V)v = - Vp* + KN (u - v) (conservation of linear momentum). (63) 

Here u is the fluid phase macroscopic velocity vector, v is the dust phase macroscopic velocity 
vector, p is the fluid pressure, p* is the dust phase partial pressure, p is the viscosity, q* is the 
permeability, m is the mass of each dust particle, K is the drag coefficient of resistance and N is the 
dust particle number density. 

For the two-dimensional flow under consideration, equations (60)-(63) represent a system of 
six equations in the seven unknowns u, v, N, p and p * .  Assuming a uniform distribution of dust 
particles throughout the flow field, the number density N can be taken as constant, reducing the 
number of unknowns to six. The dust phase partial pressure p* is the pressure necessary for the 
computed dust phase velocity components to satisfy equation (63) with N taken as constant." 

Eliminating the pressure terms, equations (60)-(63) can be expressed in the following (non- 
dimensional) vorticity-streamfunction form: 

Here 'PI is the fluid phase streamfunction, Y z  is the dust phase streamfunction, Q1 is the fluid 
phase vorticity and Q, is the dust phase vorticity. 

The non-dimensional quantities in equations (64)-(67) are related to the original dimensional 
quantities by the following relations: U=u/Uo, V=v/Uo, X = x / L ,  Y =  y/L,  q=q*/Lz, 
( K N ) * = K N / ( p U o / L ) ,  K1 =K/ (mL/Uo) ,  Re= L U o p / p  is the Reynolds number, where U o  and 
L are characteristic velocity and length respectively. 
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In terms of the streamfunctions the dimensionless velocity components are defined by 

u1 = ( y l ) Y 1  Ua=(Y2)r, 

v, =-(Y1)x9 v2 = - ( ' y 2 ) x  

4 = ( 6 )x - (U 1 )Y 9 

a2 = (v2h - W 2 ) r .  

and the dimensionless vorticities are defined by 

In the type of flow and porous medium under consideration the effects of Re are negligible and 
thus (65) takes the form 

( W x x  + ( Q 2 ) Y Y  + ( 1 M Q 2  - Q1) = 0. (72) 
The dusty fluid flow equations (64), (66), (67) and (72) are then transformed into the new 

co-ordinate system by applying the transformation equations (46) and (47) to the fluid phase 
equations and the transformation equations (49) and (50) to the dust phase equations. 

The fluid phase streamfunction equation (64) is thus transformed to the form 

( y1)a y1 )xx - 2( y1 )x( y1 )Y( y1 h'y + c1+ ( y1 ):I ( y1 hY = ( y1 GQl . (73) 
The dust phase streamfunction equation (66) is also transformed to a form similar to (73). 

The dust phase vorticity equation (67) is transformed into 

(Q2)x = K 1 (Y2h (Q1- Q213 (74) 

( Y1 )Wl )xx - 2( y1 ) x  ( Yl )Yml )XY + c 1 + ( y1 ):I (a 1 )'yY - Q1( y1 MQl )Iy - ( y, M f i 2  - Ql )h = 0. 
(75) 

while the fluid phase vorticity equation (72) is transformed to 

The problem has thus been transformed from that of determining Y1, Y2, R, and R2 in the 
physical plane to that of finding Y1, Y2,  R, and R2 in the computational plane. Once Y1 and 
Y2 are obtained, then the fluid phase and dust phase streamlines may be simply obtained by 
plotting the values of Y1 and Y2 in the physical ( X ,  Y )  plane. 

6.3. Boundary conditions 

In this work the simple case of uniform flow at infinity for both the dust phase and the fluid 
phase is employed. Although the uniform flow at X=-co is plausible, the uniform flow 
assumption at X=oo seems to be improbable in the light of the fact that in the presence of 
a boundary the dust particles may bombard this boundary, deposit and accumulate on this 
boundary, initiate the motion of other particles already settled on the boundary or bounce off the 
boundary and reflect back into the flow field." 

Although the above is perfectly acceptable in the case of a solid boundary, the current problem 
avoids this situation by taking the lower boundary of the porous medium to be a static fluid, 
along which the usual flow tangency condition can also be interpreted as a no-penetration 
condition for the dust particles. This implies that the effect of this boundary on the dust particles 
is to perfectly reflect the dust particles back into the flow field. This of course is facilitated by the 
assumption that the dust particle number density is constant throughout the flow field, which 
implies that the static interface may be taken as a dust phase streamline, considered here as the 
zero streamline for both the fluid and the dust. In the light of this discussion and assuming that 
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Figure 2. Representative sketch computational domain 

the flow domain is large enough that the effect of the humpf(X) on the flow field dies out far 
downstream, it is possible to impose a uniform flow condition at X =a. Although this type of 
boundary condition is the only one treated in the current analysis, other types of boundary 
conditions compatible with the dusty fluid flow model at hand are also possible. 

To summarize, the boundary conditions in the computational domain (Figure 2) take the 
following form. 

1. Uniform flow at infinity: 

Y1=Yl at X = f m  and Yl=oo, (76) 

Y 2 = Y 2  at X = f m  and Y2=00, (77) 

Q l = O  at X = f m  and Yl=oo, (78) 

Q2=0 at X = f m  and V2=00. (79) 
2. Flow tangency (along the interface): 

Y1 (X, 0) =f(X), -00 < x < 00, 

Y, (X ,  O)=f(X), -00<x<00. (81) 
The vorticity along the interface for each of the phases present remains a quantity to be 

determined. 
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7. SOLUTION PROCEDURE 

The governing system of equations in the new co-ordinate system is solved iteratively and 
consecutively by locally freezing the coefficients ’ and central differencing the derivatives involved. 
The iterative solutions to the resulting matrix equations are obtained via successive line over- 
relaxation subject to the following convergence criterion: IF!’’ - F t j l  c 5 x lo-’ for all internal 
grid points (i, j ) ,  where n is the iteration level and Fi, j  stands for any of Yl, Y 2 ,  Ql or 0,. The 
velocity components and vorticity of each of the phases involved are updated at the boundary 
using first-order-accurate single-sided schemes in terms of the most up-to-date values of Y1 
and Y2.  

8. RESULTS AND DISCUSSION 

Solutions have been obtained for dust parameter K 1  =20 and 50 and dimensionless permeability 
q =0.1,0.01 and 0.001. It should be noted that all the results in this section are based on a 32 x 32 
grid. The extent of the computational domain is chosen for the current analysis to be - 2 < X < 2 
and OGYG2. 

Although it might be argued that this grid is too coarse and the extent of the domain is not 
large enough, they have proven to be fine enough to illustrate the applicability of the method. The 
effects of the domain extent and grid refinement are discussed in Section 8.4. As a cross-check of 
the validity and accuracy of the obtained solution, the convergent numerical values were 
substituted into the continuity equation of each of the phases to ensure that they are satisfied. 
Continuity equations were satisfied to within an error that is no greater than 5 x lov5 for all 
points in the flow field. This of course does not preclude the possibility of some inaccuracies that 
may arise near the leading and trailing edges of the hump, as is witnessed by the less accurate 
vorticity results as discussed in Section 8.3. These inaccuracies may be better handled by 
grid-clustering techniques near these edges as discussed by Barron.’ 

8.1. Flow development 

In order to illustrate the differences in the streamline patterns for the fluid phase and the dust 
phase, the requirement of fine plotting scales becomes essential. For this reason the values of 
Y1 and Yz are tabulated for different streamlines and different flow regimes. These are given in 
Tables I and I1 to illustrate that the extended von Mises method renders the streamlines of the 
two phases. The values of Y1 and Y2 are tabulated for the streamlines Y = Y2 = 0.09524,038095 
and 1.3333 for different K 1 .  Once the data in these tables are plotted, the indicated streamlines for 
the respective phases result. 

8.2. Velocity projiles 

Figures 3 and 4 illustrate the fluid phase X-component of velocity along the interface for 
different permeability and different K 1 .  In Figure 3 this velocity component is illustrated for 
K1 =20 and different q. It is seen that an increase in permeability results in a decrease in this 
velocity component over f(X). 

As is well known, an increase in permeability results in a corresponding increase in the velocity 
of the fluid in the porous medium. Although this is true for most of the porous medium, the 
decrease in velocity with increasing permeability in regions close to the lower boundary is 
attributed to the development of a boundary layer. The thickness of the boundary layer is 
dependent on the permeability and has been predicted to be of the order of Jq.12 
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Table I. Y1 and Y2 on different streamlines ( K ,  =SO, q=O.Ol)  

-2  
- 1,742 
- 1.484 
- 1.226 
- 0.968 
- 0,709 
- 0.452 
-0'194 

0065 
0.323 
0.58 1 
0.839 
1,097 
1,355 
1.613 
2 

0.09524 
0.09534 
0.09 5 7 8 
0.09650 
0.09789 
0.10135 
013749 
0.17387 
0.1 801 5 
0.16028 
0.10749 
0.0989 1 
0.09693 
0.09607 
009557 
0.09524 

0.09524 
0.09 5 32 
0.09576 
009649 
0.09792 
0.101 62 
013711 
0.17385 
0.18013 
0.16084 
0.10707 
0.09 8 77 
0.0969 1 
009607 
0.09 5 59 
0.09524 

0.38095 
0.38109 
0.38244 
0.38470 
0.38901 
0.39788 
0.4 138 1 
0.428 19 
0.43 13 1 
0.42187 
040496 
0.39256 
0.38630 
0.38315 
0.38147 
038095 

0.38095 
0.38101 
0.38237 
0.38465 
0.38898 
0.39785 
041379 
0.428 19 
0.43 132 
0.42 188 
0.40497 
0.39259 
0.38634 
0.38321 
0.38154 
0.38095 

1.3333 
1.3306 
1.3310 
1.3320 
1.3335 
1.3353 
1.3371 
1.3383 
1.3385 
1.3376 
1.3358 
1,3337 
1.3319 
1.3305 
1.3298 
1.3333 

1.3333 
1.3304 
1.3309 
1.3319 
1.3335 
1.3353 
1.3371 
1.3383 
1.3385 
1.3376 
1.3359 
1.3338 
1,3319 
1.3306 
1.3300 
1.3333 

Table 11. Y1 and Y2 on different streamlines ( K ,  =20, q=O.Ol) 

Y = 0.09524 Y =0.38095 Y = 1.3333 

X 

-2 
- 1.742 
- 1.484 
- 1.226 
- 0.968 
- 0.709 
-0'452 
-0'194 

0.065 
0323 
0.581 
0839 
1.097 
1.355 
1.613 
2 

Y1 

0.09524 
0.09532 
0.09575 
0.09649 
0.09800 
010187 
0.13702 
0.17354 
0.17988 
0.1 6069 
0.10855 
0.09873 
0.09663 
0.09581 
0.09539 
0.09524 

y2 

0.09524 
009523 
009564 
0.09642 
0,09808 
0.10304 
0.13585 
0.17325 
0.17998 
0.16 192 
0.10825 
0.098 15 
0.09644 
0.09 5 7 7 
0.09541 
0.09524 

y ,  

0.38095 
0.381 14 
0.38259 
0.38497 
0-38937 
039825 
041434 
0-42889 
0.43200 
0.42229 
0.405 17 
0.39295 
0.38679 
0.38361 
0.381 82 
0.38095 

y2 

0.38095 
0.38077 
0.38216 
0.38464 
0.38915 
0.39807 
0.41412 
0.42880 
0.43202 
0.42241 
0.40521 
0.39297 
0.38688 
0.3 8 3 79 
0.38206 
0.38095 

y2 

1.3333 
1.3310 
1.3320 
1.3333 
1.3350 
1.3369 
1.3387 
1.3398 
1.3399 
1.3389 
1.3370 
1.3348 
1.3327 
1.3311 
1.3300 
1.3333 

1.3333 
1.3300 
1.3309 
1.3326 
1.3346 
1.3367 
1.3386 
1.3398 
1.3400 
1.3390 
1.3372 
1.3350 
1.3330 
1.3315 
1.3305 
1.3333 

In the current analysis, although a model based on boundary layer analysis has not been 
employed, the viscous and boundary effects are nevertheless present and are dependent on the 
permeability. In the light of this, a reduction in the above-discussed velocity component along the 
lower boundary with increasing permeability is expected as given in Figure 3. 

In Figure 4 this component of velocity is illustrated for q = 0.1 and different K 1 .  It is seen that 
increasing K1  results in decreasing this velocity component over the major part off(X). This 
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Figure 3. Fluid phase horizontal velocity component along the interface ( K ,  =20): - - - -, q = O 1 ;  . . . . , q=@01; 
-, q=OOol 

decrease in velocity with increasing K1 is attributed to the fact that when the mass of each dust 
particle is considered constant, then increasing K1 results in increasing the drag coefficient of 
resistance, which results in slowing down the dust particle motion as depicted in Figure 4. 

For a given permeability q=O.Ol  and K ,  =20, Figure 5 illustrates the fluid phase normal 
component of velocity over the hump. This profile is representative of this fluid phase component 
for different K1 and different permeabilities. The figure also gives the comparison at K 1  =20 
between the fluid phase and dust phase normal velocity components. 

Figure 6 illustrates the fluid phase X-component of velocity along the vertical line passing 
through a point near the maximum of f(X). The figure indicates that as the permeability is 
decreased for a given K 1 ,  this velocity component decreases in regions away from the lower 
boundary. This behaviour is of course expected, as discussed above with regard to Figure 3. As we 
approach the upper regions of the flow domain, fluctuations of this component of velocity occur. 
For larger permeability this oscillation starts to dampen out. Although it is expected that at 
points far enough from the interface the profile should become more uniform, as indicated by the 
boundary conditions far upstream, this behaviour might be an indication that the extent of the 
flow domain is not large enough. The uppermost streamline might thus be viewed as a boundary 
line which, according to the flow condition of constant number density, perfectly reflects the dust 
particles back into the flow field. This in turn might result in the detected fluctuations and 
oscillations in velocity as depicted in Figure 6. 
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Figure 4. Dust phase horizontal velocity component along the interface (q =0.1): - - - -, K ,  =50; __ , K , = 2 0  

In the light of the effect of permeability on damping out the oscillations, it might also be 
concluded that the permeability associated with the dusty fluid flow model considered should be 
large. It has also been noticed that increasing K1 results in damping out these oscillations for 
a given permeability. 

8.3 Fluid phase vorticity 

Figures 7 and 8 illustrate the fluid phase and dust phase vorticities along the static interface 
over the hump. In Figure 7 the vorticity is illustrated for K1 = 20 and different permeabilities. 
From this figure one can conclude that the absolute value of vorticity decreases with decreasing 
permeability. In Figure 8 the fluid phase and dust phase vorticities along the static interface over 
the hump are compared. This figure indicates the increase in the dust phase vorticity over the fluid 
phase vorticity for a given value of permeability and a given K1.  As the value of K1 is increased 
for a given permeability, the fluid phase and dust phase vorticities approach each other. 

In both Figures 7 and 8 an appreciable drop in the vorticities is noticed as we move in the 
downstream direction, when X > 0.25, and this drop becomes sharp as we approach the trailing 
edge of the hump. This of course may be ascribed to the fact that the far-downstream imposed 
condition is that of a uniform flow and thus it forces the vorticity to undergo drastic oscillations. 
Furthermore, this might also be indicative of the need for a finer grid or a clustered grid in regions 
close to the leading and trailing edges of the hump in order to obtain a more accurate solution. 



TWO-PHASE FLUID FLOW OVER CURVED BOUNDARIES 899 

V 

0.5 

0 .4  

0.0 

-0.4 

-0.5 

0.0 0 . 4 5  -0 .45  

X 

Figure 5. Fluid phase (-) and dust phase (. . . .) vertical velocity components along the interface (q =0.01, KI = 20) 

8.4. Grid refinement and domain extent 

In order to illustrate the effects of the grid size and the domain extent on the convergence of the 
numerical procedure and on the computed results, a numerical experiment is carried out in which 
different mesh sizes are considered for a fixed domain extent and different domain extents for 
a fixed grid size. For the sake of simplicity the effect of the domain extent in the Y-direction is 
isolated in this experiment by considering the flow domain described by 

-co<x<co, fi(X)< Y<fZ(X), 

where 

0.2(0*25 -X2)1’2, -0.5 < X G0.5, 
X<-0.5 or X>0.5, 

and 

1 - 0.2(0.25 - X 2 )  ’”, - 0.5 < X < 0.5, 
X<-0.5 or X>0.5 .  

This corresponds to the computational domain described by 
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Figure 6. Fluid phase horizontal velocity component at X = X , ,  corresponding to a point near the maximum off(X) 
(K, =20): -B-B-, q=O.Ol; -O-O-, ~ = 0 ~ 0 0 1  

The boundary conditions associated with this problem are uniform flow at infinity for both 
phases and flow tangency along the boundaries. 

Three different computational domain extents in the X-direction are considered: X E [-2,2], 
X E [- 3,3] and X E [-4,4]. The results of the numerical experiment are summarized in 
Tables 111-VII. 

Table I11 illustrates the effect of the computational domain extent for different grid sizes and 
different permeabilities on the number of iterations required for convergence, with the conver- 
gence criterion being the same as that discussed in Section 7. The table shows that increasing the 
number of grid points for a given domain extent results in an increase in the number of iterations. 
This behaviour might be ascribed to the fact that it requires more 'effort' to dampen out the large 
oscillations in the solution in the case of a finer grid. 

For a given grid size Table I11 also shows that increasing the domain extent results in 
a decrease in the number of iterations necessary for convergence. This may be seen in the table 
as one goes from X E [-2,2] to X E  [-3,3] with the 64 x 22 grid and from X E  [- 3,3] to 
X E [- 4,4] with the 84 x 22 grid. 

Table IV illustrates the effect of permeability on the number of iterations for different grid sizes 
and different computational domain extents. In all cases it is seen that decreasing the permeability 
results in decreasing the number of iterations. This may be ascribed to the fact that the diagonal 
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Figure 7. Fluid phase vorticity along the interface (K, =20): -A-A-, q=O.I; -.-.-, q=O.O1; -O-O-, q=O.OOl 

dominance of the matrix resulting from the fluid phase vorticity equation is enhanced with 
a reduction in permeability, thus rendering faster convergence. 

For a fixed domain extent Table V illustrates the effect of the grid size in the Y-direction on the 
number of iterations. It demonstrates the increase in the number of iterations with increasing 
number of grid points in the "-direction, a conclusion that is consistent with the results in 
Table 111. 

The effects of the grid size and the extent of the computational domain on the computed results 
are illustrated in Tables VI and VII. These effects are studied on the fluid phase and dust phase 
tangential velocity components U1 and U 2  respectively at the centre of the flow domain, 
( X ,  Y)=(O, 0.5). The values are obtained by averaging the values of U1 and U ,  at the four grid 
points neighbouring the centre of the channel. 

In all the cases considered the qualitative behaviour of the velocity components is the same, 
i.e. the dust phase velocity component is slightly greater than the fluid phase component. This of 
course sheds some light on the accuracy of the numerical scheme and the method employed. The 
quantitative behaviour, on the other hand, indicates slight discrepancies in the results with 
increasing domain extent and/or grid refinement. The error committed (maximum of the absolute 
and the relative), however, remains less than 3%, thus indicating that the coarse grid solution 
might serve as an acceptable first approximation to the solution. 
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Figure 8. Fluid phase and dust phase vorticities along the interface (q =0.01): -O-O-, K I  =50, a,; - - - -, K 1  =50, a,; -.-.-, K1=20,  a,; -0-0-, K1=20,  z1z 

Table 111. Effect of the horizontal extent of the domain on the 
number of iterations ( K ,  = 20) 

X E  Grid size rl Iterations 

c-4,41 100 x 22 

84 x 22 

[-3,31 84 x 22 

64x22 

c-2,21 32 x 22 
32 x 22 
52 x 22 
64 x 22 

0.1 
0.05 
0.1 
0.05 

0.1 
0.05 
0.1 
005 

0.1 
005 
0.05 
0.05 

219 
197 
157 
133 

400 
38 1 
160 
138 

127 
108 
194 
705 



TWO-PHASE FLUID FLOW OVER CURVED BOUNDARIES 903 

Table IV. Effect of permeability q on the number of iterations ( K ,  = 20) 

~~ ~ 

Grid 32x22 64x22 84x22 84x22 100x22 
q = 0.05 108 138 38 1 133 197 
q = 0 1  127 160 400 157 219 

Table V. Effect of the grid size in the Y-direction on number of 
iterations ( X  E [- 2,2]) 

Grid size ‘I K1 Iterations 

42 x 32 0.05 20 
52 x 22 
52 x 42 

42 x 22 0.05 50 
52 x 42 

32 x 22 0.1 50 
52 x 22 
52 x 42 

126 
194 
242 

151 
288 

110 
236 
288 

Table VI. Tangential velocity components at the centre of the 
channel for different grid sizes ( X E  [-2,2], K1 =20) 

Grid size u1 u2 

32 x 22 
52 x 22 
42 x 32 
52 x 42 

0.85447 0.858 17 
0.87057 087202 
0.85822 0.8586 1 
0.8741 3 0.87475 

Table VII. Fluid phase and dust phase velocity components at the centre of 
the channel for different grid sizes, domain extents and permeabilities 

( K ,  =20) 

Permeability 
Grid size and domain ?I u1 u2 

100 x 22 

84 x 22 

84 x 22 

64 x 22 
C- 3,31 

c- 4,41 

~ - 4 ~ 4 1  

c- 3,31 

0.05 
0.1 

0105 
0.1 

0.05 
0.1 

0.05 
0.1 

0.86402 
0.86454 

0.86574 
0.866 18 

0.85879 
0.8 59 1 7 

0.86861 
086904 

0.86542 
0.86601 

0.86692 
0.86742 

0.8 58 8 5 
0.85945 

0.8698 1 
0.87029 
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9. CONCLUSIONS 

In this work the von Mises transformation has been extended in terms of double co-ordinates in 
an attempt to provide a method that is applicable to the study of general two-phase flow over 
curved boundaries. The transformation has also been implemented in the study of dusty fluid flow 
through a porous medium bounded below by a stationary fluid. The nature of the problem 
considered does not allow for definitive conclusions about the employed model but illustrates 
how the double von Mises transformation may be utilized in the study of dusty fluid flow over 
curved boundaries. However, application of the method to more realistic flow problems will not 
only demonstrate the usefulness of the proposed method but will also give a greater insight on the 
possibility of implementing the method and demonstrating its advantages, some of which are 
summarized as follows. 

1. In the study of dusty gas flows over curved boundaries which are streamlines, the extended 
von Mises transformation offers a simple and plausible way to handle the curved bound- 
aries provided that the spatial Jacobians of the transformations remain finite and do not 
vanish. The method has proven to be easy to implement numerically and is easy to code. 

2. In cases where the number density N is not taken to be constant, it is possible to determine 
the regions of dust accumulation by the knowledge of the shape of the dust phase 
streamlines which are directly obtained by plotting the values of Y2 for a given Y2. 

3. The method is not restricted to dusty fluid flow through porous media. It is easily 
implemented for the usual dusty gas flow equations in free space. 

4. The method is not restricted to the study of dusty gas flows over curved boundaries. It can 
also be used in the case of straight boundaries, when N is variable, and thus regions of dust 
accumulation may be determined as in point 2 above. 

APPENDIX: NOMENCLATURE 

dimensionless streamfunction 
dimensionless first-phase streamfunction 
dimensionless second-phase streamfunction 
typical streamline (constant streamfunction) 
dimensionless vorticity 
dimensionless first-phase voritcity 
dimensionless second-phase vorticity 
curvilinear co-ordinates 
time variables in the von Mises and extended von Mises transformations 

dimensionless Cartesian co-ordinates 
dimensionless time variables 
spatial Jacobians of transformation 
temporal Jacobians of transformation 
dust particle number densities 
masses of single dust particles 
Stokes coefficient of resistance ( S  = 67wp when the dust particles are spheres of 
radius r )  
drag coefficient of resistance in the porous medium 

fluid density 
KI(mLI UO 1 
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fluid viscosity 
dimensional permeability 
dimensionless permeability 
functions of X 
fluid phase partial pressure 
dust phase partial pressure 
length, reference length 
characteristic velocity 
Reynolds number 
dust phase velocity vector 
fluid phase velocity vector 
dust phase dimensionless velocity vector 
fluid phase dimensionless velocity vector 
fluid phase velocity components 
dust phase velocity components 
dimensionless velocity components 
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